Energy is a strategic input for the mining industry in Latin America and worldwide. Mining requires large amounts of energy, which drives up total operational costs. In Chile, mining companies consume 34 percent of the total energy produced in the country and spend approximately 20 percent of their total income on electricity costs. According to official mining sources, the copper mining industry is expected to consume 41.1 terawatt-hours (TWh) in 2025, an increase of 95.5 percent from 2013. New projects alone will consume 36.2 percent by 2025. The world’s biggest copper companies use concentration plants—which are energy intensive and use the world’s biggest pumps—as their main production process. In 2013, concentration plants represented 48.6 percent of the total energy consumption for the copper mining industry, which is expected to increase to 64.2 percent by 2025, reaching 26.4 TWh. Water is another major concern in the mining industry. Freshwater restrictions from scarcity or government policy will have an impact on water availability for future mining projects. Because of these restrictions, desalination plants and seawater pumping systems are also expected to reach 6.2 TWh, representing up to 15 percent of the industry’s total energy consumption.
The computational fluid dynamics process advances highly efficient pump designs for difficult applications.
08/26/2014
Image 1. Vertical turbine pump designed using CFD
The pump was designed for a capacity of 3,100 m3/h and a total dynamic head of 90 m, obtaining an efficiency of 85 percent. Because of the highly abrasive potential of the water, the pump was designed to run at a low speed of 995 rotations per minute (rpm) or 50 hertz. The low speed diminished the abrasive wear of its internal parts, which in the case of centrifugal pumps, is known to be proportional to the cube of the particles’ flow velocity.
Because the pump was for a short-set application, some special design considerations were necessary to guarantee reliability and long operational life. All the bearings and wear rings use advanced polymeric materials with better lubrication properties. An independent axial thrust bearing assembly supports the pump’s thrust and protects the motor from any damage during startup and operation. Flanged column pipes ensure pump and shaft straightness during operation. A reinforced suction bell and strainer minimize suction submergence and prevent the entrance of large solid particles.
To protect the pump from the highly corrosive and abrasive water, duplex 2205 stainless steel was specified for all the wet parts of the pump design. This material is a combination of austenitic and ferrite stainless steel. It is ideal for chloride-containing environments because of its resistance for localized corrosion types such as intergranular, pitting and crevice. Because of this feature, it provides a better performance than 316L or 317L stainless steels. It is also resistant to chloride stress corrosion cracking (SCC), so it was the right choice for this highly corrosive application (see Image 2).
High resistance to fatigue, abrasion and erosion also made the material suitable for this project. Its combination of moderate hardness and high toughness is ideal for the pumping of water with high solid concentration.
Image 2. Vertical turbine pump completely cast in duplex 2205 stainless steel (Article images courtesy of Neptuno Pumps.)
The internal geometry of this CFD-validated pump design was then 3-D printed directly from the 3-D computer-aided design (CAD) files to strictly maintain all of its mechanical and hydraulic characteristics, which ensure its highly efficient performance. This 3-D printed pump model was cast using advanced investment casting technologies by the pump manufacturer in-house to guarantee perfect reproduction and a smooth surface finish, both significant factors when striving for high efficiency.
The pump was then assembled and tested. Results showed that the error between CFD simulation and the actual pump performance test was lower than 3 percent. This was well within the 5 percent allowable tolerance that ISO 9906 for pump performance tests specifies for efficiency in its Grade 2B.
The installation of these pumps allowed the end user to double reclaim water pumping capacity, reaching approximately 31,000 m3/h, with 50 percent fewer pumps than would have been required with the previous pump model. The new model increased the user’s system reliability with a heavy-duty metallurgy capable of withstanding this highly abrasive and corrosive application for 10 to 12 months before repairs or replacement become necessary. The pump system efficiency showed an improvement of approximately 5 percent, reducing energy costs as well as carbon dioxide emissions to the atmosphere (see Image 3).
Image 3. Three vertical turbine pumps in the Andes Mountains, each with a 3,100-m3/hcapacity