Like snowflakes and human fingerprints, no two oil wells are exactly the same. Even though they may be on adjacent plots of land, the characteristics of the wells can be vastly different. Whereas one might have a straight, unencumbered path to the product reservoir, the second’s drilling route may require a number of dogleg turns to avoid difficult rock and sediment formations, which can give the final wellbore the look of a corkscrew. The differences do not end when the product reservoir is tapped. Production companies have long known that oil from different regions can have little in common. That can also be the case for wells in close proximity to each other, with the crude oil’s makeup varying to a significant degree. Therefore, it is critically important that the exploration and production company’s oilfield technicians are intimately aware of the unique operating characteristics of each and every well. This will help them select and deploy transfer equipment—with pumps playing a significant role—that optimizes returns while minimizing costly downtime caused by breakdowns that require maintenance or replacement.
These pumps handle gas-heavy three-phase liquids that are common in many oilfield applications.
Blackmer
04/02/2019
Image 1. Sliding vane pumps can handle the extreme cold or harsh heat that is common in many oilfield operations. (Images courtesy of Blackmer)
Image 2. The design of sliding vane pumps enables them to deliver the operational characteristics that help ensure effective high-volume transfer of crude oil with significant amounts of entrained gases.
Image 3. Crude oil’s makeup as a “three-phase” liquid can makes its transfer difficult if it contains high levels of entrained gas, which can result in fluctuating transfer-system pressures and product flow rates.
Sliding vane pump design features a number of vanes that are able to slide into or out of slots in the pump rotor. When the pump driver turns the rotor, a combination of forces (centrifugal, mechanical push rods and liquid) causes the vanes to move outward in their slots and around the inner bore of the pump casing. This forms internal pumping chambers and, as the rotor revolves, the fluid flows through the suction port and into the pumping chambers that are created by the vanes. The fluid is then transported around the pump casing until the discharge port is reached, at which point the fluid is pushed out into the discharge piping.
The design enables the sliding vane pump to deliver the operational characteristics that are necessary for effective high-volume transfer of crude oil that includes significant amounts of entrained gases. Those characteristics include vanes that self-adjust for wear in order to maintain volumetric consistency and nonslip operation; self-priming and dry-run capabilities; high-suction capability; an adjustable relief valve that protects against changing and excessive pressures; reduced energy consumption; compatibility with high-temperature liquids; and easy vane replacement and maintenance that does not require the pump to be removed from the piping system.
Most sliding vane pump models are available in sizes that handle flow rates between 2 and 2,300 gallons per minute (gpm). Many oilfield operators are also finding success in mounting their sliding vane pumps on mobile skids that feature the pump, motor and gear case with the suction and discharge piping terminated at the skid’s edge.
Along with differing operational characteristics, oilfields can be in areas where harsh weather is a constant threat. Sliding vane pumps can operate in temperatures that can reach -30 F (-34 C) in some Bakken or Canadian oilfields, or those that can climb into the triple digits in the West Texas prairie.