Users should consider system changes to comply with the new EISA standard.
08/07/2015
Energy efficiency has become a major focus for the U.S. government, municipalities, power utilities and the industrial sector, with much of the attention falling on components such as motors and pumps. For end users, understanding the difference between component efficiency and system efficiency as applied to motor-driven equipment is critical for evaluating a total system and making appropriate upgrades. The Energy Independence and Security Act (EISA) is one standard that users must understand and comply with to successfully improve system efficiency.
Efficiency Standards as Defined by EISA
For each general-purpose rating (Subtype 1) from 1 to 200 horsepower (HP) that was previously covered by EPAct, the law specifies a nominal full-load efficiency level based on National Electrical Manufacturers Association (NEMA) premium efficiency as shown in NEMA MG 1, Table 12-12. All 230- or 460-volt (and 575-volt for Canada) motors currently under EPAct that were manufactured after December 19, 2010, must meet or exceed this efficiency level. General-purpose electric motors (Subtype II) not previously covered by EPAct will be required to comply with energy efficiencies as defined by NEMA MG 1, Table 12-11. The term general-purpose electric motor (Subtype II) refers to motors that incorporate the design elements of a general-purpose electric motor (Subtype I) that are configured as one of the following:- U-frame motor
- Design C motor
- Close-coupled pump motor
- Footless motor vertical solid shaft normal thrust motor (as in a horizontal configuration)
- An 8-pole motor (900 rpm)
- A poly-phase motor with voltage of not more than 600 volts (other than 230 or 460 volts)
Motor Losses
Losses in a motor include stray losses, rotors, stators, core losses and fan design (windage). To make a motor more efficient, a manufacturer must add more or better material. These additions and adjustments could include more active material such as copper in the winding, a longer stator, rotor cores and improved electrical steel (silicon steel is used for the stator and rotor). A low-loss fan design could also be used to reduce friction and windage losses. To reduce the stray load losses, manufacturing processes are assured through International Organization for Standardization (ISO) 9001 procedures. Some advantages of energy efficient motors are:- Maximum Efficiency – Energy-efficient motors operate at maximum efficiency even when they are lightly loaded because of better design.
- Longer Life – Energy-efficient motors dissipate less heat compared with standard motors. Use of energy-efficient fans keeps the motor at a lower temperature, which increases the life of the insulation and windings as well as the overall life of the motor.
- Lower Operating Cost – The total energy cost of energy-efficient motors during its life cycle is much lower when compared with conventional motors.
- Other Benefits – Energy-efficient motors have better tolerance to thermal and electrical stresses, the ability to operate at higher temperatures, and the ability to withstand abnormal operating conditions such as low voltage, high voltage or phase imbalance.
System Efficiency
Energy-efficient motors can also improve system efficiency, but end users must consider the following factors:- Motors meeting higher efficiencies tend to run faster than their less efficient counterparts.
- Matching speeds to application need (such as pump flow) is important to consider.
- Drives may be required, which offers the opportunity to increase system efficiency in applications with variable output requirements. Variable frequency drives (VFDs) require further considerations for optimum reliability and efficiency.
- In some cases, mounting dimensions for motor into machinery may be slightly different.
Case Study
The following case study graphically illustrates the impact of a premium-efficient motor in a centrifugal pumping application.
- EISA Standards Department of Energy
- WEG Electric