The end user’s need seemed straightforward at first glance. A power plant wanted to replace its aging deionization infrastructure with a more modern system using ultrafiltration (UF), reverse osmosis (RO) and electro-deionization (EDI). The power industry is one of the largest industrial water users by volume in the world, with needs ranging from water cooling to production of ultrapure water for steam to feed turbines. Requests to replace aging water treatment assets are not uncommon. The complicating factor in this example was the time frame. This power plant was a traditional coal fired plant, and it ran continuously. It had one scheduled shutdown per year, and it needed a new water purification plant to be installed in its narrow window of time. It also had several plant specifications, such as materials of construction and instrumentation, that were important. The combination of meeting the user’s unique specifications by customizing equipment and executing quickly on a project are two goals historically at odds. Customization requires extra engineering, and procurement of unique components can drive equipment lead times to be longer than with standard, off-the-shelf equipment. In years past, this combination of customization and speed would have forced the power plant to choose one over the other, either missing its time window and postponing the project, or accepting equipment that did not meet all of the specifications the end users cared about. Fortunately, digitization of many water purification design and construction tools has allowed companies to be flexible in the equipment options users care about and still execute on projects with speed. Digitization of tools comes in several forms. Today’s process design tools are available online and allow for accurate water quality projections in minutes instead of days. Cost estimating and proposal writing can now also be completed online, significantly reducing the time required for engineers to prepare proposals and schedules to match users’ unique specifications. Planning for spare parts and regular consumable replacements can also be executed quickly using an online store for pricing and delivery information.
Suppliers and users in the water industry are better connected because of these developments.
SUEZ – Water Technologies & Solutions
05/25/2018
Image 1. Sample process flow design from the process design tool. (Images courtesy of SUEZ)
Image 2. Sample feedwater analysis to customize the solution design.
Image 3. Screenshot of the values used to configure the appropriate product to meet specifications.
Users can get immediate pricing and delivery information from this tool to help plan the projects’ budgets and schedules. The pre-engineering on these systems goes beyond pricing and delivery information. Bills of materials and 3-D models for fabrication drawings also exist so that when an order is placed, the equipment can be built in quick time frames normally associated with standard equipment.