Pick up any back issue of Pumps & Systems magazine and there is a trove of articles focused on monitoring, maintaining, repairing or otherwise optimizing every variety of pump system, sub-assembly and component. Why is that? Why is so much of our time and attention allocated to this subject matter? It is because selecting, purchasing and installing a pump is only the beginning of the story, not the end. The cost of ownership of a pump and the overall system, or function, into which it is integrated, has to include the cost of keeping that pump and system predictably operational over its lifetime. Downtime costs money, and unscheduled downtime from a sudden failure can cost big. In the never-ending quest to improve monitoring and maintenance outcomes, lower repair costs and reduce downtime, the use of video borescope technology can prove indispensable. These instruments have improved over the past five years, driven by the miniaturization of image sensors, optical lenses, LEDs and micro-EDM techniques. The end result is a portable, easy-to-use diagnostic tool that allows a technician to gain visual access to internal components without the need for disassembly—all that is required is a small access port through which the borescope “insertion tube” can be passed.
Then & Now
Experienced end users may remember when the term “borescope” referred to a small-diameter, rigid-tube instrument with an eyepiece on one end and an angled mirror on the other. These are still used for certain straight-line applications, such as rifle barrel or small dimension casting. And while modern, video-based borescopes are used to achieve essentially the same end—to gain visual access to an obscured area—that is where the similarities to early, rigid borescopes end. Today’s video-based borescopes feature video graphics array (VGA) or high definition (HD) resolution cameras, super bright, distally mounted LEDs for illumination, onboard photo and video capture capability, and, perhaps most importantly, joystick-controlled camera articulation. These features help users see and steer through the internal area to the point of interest, clearly examine it and visually document the condition of target components.Borescope Applications
The main limiting factor in determining whether a borescope can be used in any specific application is the diameter of the insertion tube. A smaller diameter insertion tube can fit through smaller access ports and navigate narrower passageways than a larger diameter insertion tube. Using VGA camera resolution as a benchmark, technology over the past 20 years has shrunk insertion tube diameters from 6 millimeters (mm) to 3.9 mm to 2.8 mm, thus allowing visual access to more components in tighter spaces than before. Using a video borescope with a flexible, small insertion tube, technicians can inspect and visually record the condition of bearings, races, seals, gears, vanes and turbine blades, with minimal or no disassembly.Borescope Selection
Every video borescope comes with a base unit, which houses the printed circuit board (PCBs), menu buttons, display monitor, batteries and other standard components. The insertion tube attached to the base unit is available in a wide variety of lengths and diameters. When deciding which type of borescope is right for a particular application, the key selection criteria are insertion tube length and diameter. Selecting the right insertion tube requires a thorough knowledge of the equipment to be inspected:- Where are the insertion tube access ports?
- How far are these access ports from the components?
- Is it a straight shot from the access port to the inspection target area, or are there bends and curves along the way?
- What is the diameter of the pathway to the target area, and how much room is available to maneuver the camera once operational?