The Industrial Internet of Things (IIoT) has the capacity to reshape plant operations. The IIoT serves to connect the digital and physical worlds through the latest technology in order to improve the quality and speed of critical information. That information can be shared and used to make better-informed decisions. Many factories use a preventive maintenance (PM) program to check critical equipment with portable tools to find signs of degradation. These essential methods for discovering system glitches often miss intermittent problems. If a maintenance technician does not capture critical information at the right time, intermittent unnoticed faults can escalate into complete failure. This is where the latest portable condition monitoring devices and software enter the picture. Plants often deal with underperforming motors, and it is crucial to figure out the root cause of the motor’s failure. In this common scenario, technicians may discover the motor is running hot because of insufficient insulation in the windings. Narrowing down the reason can be difficult.
If intermittent problems go unnoticed or cannot be measured and investigated, small issues can become failures.
Fluke Corporation
05/17/2017
Image 1. Maintenance technicians can place portable sensors on operational equipment to monitor for up to a month. (Images courtesy of Fluke Corporation)
The traditional solution to this problem relies on standard tools and research, logging and temperature readings. This hands-on method can produce incomplete data because it is difficult to isolate variables and correlate among current, voltage and temperature while operational conditions change. Overcompensation could happen if the maintenance team fails to isolate variables, which may lead to a temporary solution with an unfavorable outcome, like
replacing the deteriorated motor with an oversized motor. This approach trades one set of problems for another.
A newer approach uses smart technology that communicates between plants, equipment and employees. Wireless sensors that are networked to data systems create a trend of volt and current measurements over time. In the motor example, logging becomes unnecessary with portable condition monitoring because phase discrepancies can be remotely pinpointed as occurring at specific times during the equipment’s duty cycle.
Image 2. A portable condition monitoring system
Setting a threshold on the sensor and the real-time alarms informs the technician of a sudden spike or drop in current to help quickly identify intermittent faults. The results help to identify overloads as well as degradation or failure of one or more phases before they cause a safety hazard or a breakdown.
See other Maintenance Minders articles here.