Compressors alone generally cannot handle liquids and solids. This presents a challenge to oil and gas production operations, since most wells output a combination of sand, oil, water and gas—also called a multiphase fluid flow. Typical local batteries will include a separator (which includes water or solids removal), a compression module, a liquid pump, equipment to allow flaring and separate pipelines used to transport the oil, water and gas to a production facility. To combat rising equipment costs and enable increases in production, one company introduced a multiphase pumping system. The multiphase system is a complete package comprised of a progressing cavity-type pump, a drive, a seal lubricator, pressure and temperature sensors, and a control package. The system includes an inlet pressure range from 5 to 1,000 pounds per square inch gauge (psig) (with seal arrangement as required), handles pressure up to 750 psi and has a capability per pumping unit to deliver up to 2,350 gallons per minute (gpm) of total equivalent flow rate. Due to its design, the multiphase pumping system can handle large amounts or high percentages in gas volume fraction up to 99 percent. The multiphase system comes with the standard materials required to meet most applications:
- Rotor – 316SS with tungsten carbide coating
- Stator – Buna nitrile (hydrogenated nitrile)
- Mechanical seal – double cartridge (engineered seal, API 682 intent)
- Seal lubrication as required – ANSI Plan 53 (API Plan 53A, Plan 54)
- Gearbox – Shaft-in/Shaft-out, Class II gears (belt/pulley available)
- Motor – Premium efficient, severe duty, fan cooled, 50 or 60 Hz
- In Canada, an operator had a large well field with only one central processing facility (battery). The field included several dominant wells, and excessive flowline pressure was causing the wells to shut down. The multiphase pumping system was perfect for this field design, as the system more effectively handled multiphase fluids containing solids and heavy oil. After implementing the multiphase pumping system, the operator saw an increase in production of 500 barrels of oil per day (BOPD).
- An operator in North Africa had a field with aging wells that were still capable of producing oil. The operator needed to find an alternative solution to gas flaring and determined that a multiphase pumping system would be a fit. An initial pilot project, which used two 250-horsepower multiphase pumps, yielded an increase in production of approximately 2,500 BOPD. The increase was so substantial that the operator ultimately decided to use the multiphase pumping system on 15 additional wells.