Inherent arc hazards are often overlooked in medium-voltage AFDs
Eaton
12/28/2017
The Fire Protection Research Foundation reports fatal injuries related to electrical incidents from 2004 through 2010 resulted in 1,494 fatalities, 29 percent attributed to direct contact with wiring, transformers and electrical components. From 2011 to 2013, 43 percent of fatalities were attributed to indirect contact and 54 percent attributed to direct contact. There is a systematic approach to minimizing or mitigating the risk of electrical injury. The Occupational Safety and Health Administration (OSHA) Hierarchy of Controls (see Figure 1) outlines the following controls from highest level to lowest: elimination, substitution, engineering controls, warnings, administrative controls and personal protective equipment (PPE).
Figure 1. OSHA hierarchy of controls
Ideally, reducing the risk of injury with electrical equipment would involve eliminating the hazard altogether. Substitution, the second in the OSHA Hierarchy, allows different equipment to be used that is designed to reduce the risk of injury.
The equipment selected could be arc-resistant rated to protect personnel from arc flash and arc blast injury.
There are three distinct reasons why arc-resistant drives need to be considered when evaluating the risk of arc flash and arc blasts from internal arcing faults in medium-voltage adjustable frequency drives: system architecture, system impedance and system failure modes.