Centrifugal pumps make up nearly three quarters of the industrial pumps in use today and are commonly used in the power generation sector. An understanding of the design principles and an awareness of the latest developments can make a big difference when designing, specifying, maintaining or replacing a centrifugal pump in order to deliver long term reliability. As a vital piece of equipment within a power generation site, centrifugal pumps need to be correctly specified and maintained to deliver efficient and reliable service. This process of specification begins with understanding the basic terminology, principles and design characteristics to ensure that each pump can meet its full potential and deliver the required performance. Every pump has a performance graph that should be used to determine the suitability of the pump for a particular application. For a range of flows, the graph indicates the generated head, power requirement, efficiency and the net positive suction head required (NPSHr). Each pump design has an optimum flow rate, which occurs at the best efficiency point (BEP). In this example, the normal operation conditions (80 to 110 percent of BEP) and the preferred operating region (70 to 120 percent of BEP) are on either side of the BEP. Pump efficiency is a crucial factor when designing a pumping system, since 95 percent of the lifetime costs for a pump will be the energy it uses.
Learn the basics of design considerations when specifying a pump
Sulzer Pumps
12/18/2017
Image 1.Expert assistance from original equipment manufacturers (OEMs) can reduce downtime. (Images and graphics courtesy of Sulzer Pumps)
It is important to correctly specify any new pump and also ensure that the performance of existing pumps is checked when the operating characteristics of an application change. A comprehensive pump assessment can deliver significant savings as well as reduced payback periods when additional investment is required.
In addition to the pump curves, the system curve is another important tool when defining the correct pump for an application. Every system will incur additional frictional losses from piping, valves, strainers and reducers. These losses are proportional to the square of the flow rate and are measured in feet (or meters) of head.
Figure 1. Pump performance graph
The overall system curve is comprised of the frictional resistance and the static head, which is the net difference in height between the suction liquid level and the discharge liquid level. Pump designers use both the system curve and the pump curves—along with additional information such as fluid specific gravity and viscosity—to select the most appropriate pump for an application.
Image 2. Extensive testing and refinement improves performance.
When working with pumps in series, it is important to understand that although the pumps may be hydraulically the same, the designs may be different. Any pump located upstream of the initial pump will be operating at a higher pressure and so the castings, shaft diameter and pipework will need to be correctly rated for the higher pressure.
Image 3. The design principles remain the same, regardless of scale.