Read Part 1 here. Most pump bearings fail long before their design life span. The American Petroleum Institute (API) typically requires a minimum bearing life (L10) of 25,000 hours, and ANSI B73.1 specification for horizontal ANSI pumps specifies a minimum L10 bearing life of 17,000 hours at maximum load and rated speed. Prudent end users frequently request bearings with more than 40,000 hoursL10, but most bearings do not reach that many hours of operation before failure. More than half of pump bearings fail as a result of contamination, excess heat or both. Preventing this introduction of contaminates is easier and less expensive than removing them. Some studies suggest removing contaminates can be eight to 10 times more expensive than prevention.
Last of Two Parts
06/09/2015
Figure 1. Oil level on bottom ball of the bearing (Graphics courtesy of the author)
Because water in the oil is invisible at low levels, a lab should test the oil using the Karl Fisher method or the end user should conduct a simple "sizzle test" in which the oil is quickly subjected to a hot surface temperature of 250 to 300 degrees F. A hot plate is commonly used, but a metal spoon or aluminum foil with a butane lighter can also be used. If more than 800 to 1,000 PPM water is present in the oil, a sizzle sound can be heard when the oil temperature exceeds 212 to 220 F. If the oil sizzles, too much water is present in the oil. Because the sizzle test can have dangerous side effects, always check with plant safety procedures before conducting the test.
Companies that strive for longer mean time between failures (MTBF), mean time between repairs (MTBR) and improved plant reliability select their oil or grease based on equipment requirements and properly match them with the oil properties. They also store and allocate the oil using controlled and clean methods.
I have seen end users store oil drums upright, outside and unprotected with an open bung. I have also seen mechanics draw oil from drums into used paper coffee cups or soft-drink cans. When confronted, they reply, "That is the way we have always done it, and we are not having any bearing or oil problems," or "I washed out the container first."
If a pump's bearings are not lasting three to eight years, the plant's equipment lubrication practices should be questioned. Check with your oil supplier, or consult articles, books and other publications that discuss these subjects. The October 2006 issue of Pumps & Systems magazine explores this topic, and I highly recommend any books and technical papers on this subject by Heinz Bloch, Alan Budris or Rojean Thomas.
Figure 2. Cross section of bearing isolator
The majority of bearing isolators are orientation specific; they normally have a drain hole (expulsion port) that should be in the 6 o'clock position. If the port is not at the correct position, the isolator will not perform properly. For some types of ANSI pumps, the outboard isolator will have numerous evenly spaced expulsion ports because the housing it fits into can be rotated when setting the impeller clearance. The final position will not be a fixed parameter as it is in other designs, so the isolator incorporates numerous ports to satisfactorily operate in any position.