In construction, mining and wastewater applications, pump choice is critical.
02/27/2014
Solids-handling capability is an important aspect of every jobsite and differs as much as any other factor in dewatering applications. Specifying the diameter of the solids is not the only factor to consider in pump selection. Another key factor is the type of solids being pumped. Typically, types include compressible solids (such as stringy sewage, bags and rags) and non-compressible solids (standard hard solids such as rocks).
Solids-Handling Applications
Solids handling is an important consideration anytime the water being pumped is not clean water. In construction applications, solids are often rocks, bricks, sticks and stones. Whenever demolition or building occurs, these materials may end up in the liquid being pumped on the jobsite. In mining applications, all these materials are possibly included, as well as fine rocks and fine abrasive material. In municipal (water and wastewater) applications, the solids often include materials left behind by people working on the project. This can include many different items, but commonly includes stringy materials—such as trash, rags and large debris. Often, a pump that is capable of passing a certain diameter of solid cannot handle this stringy material because it winds around the impeller vanes and can cause clogging. However, the solid diameter of stringy material at a jobsite is often not as large as one would assume because these solids are compressible (think tennis ball versus cue ball).How Pumps Pass Solids
A standard dewatering pump is capable of high volumes and medium-to-high head. These pumps pass large solids, up to five inches. These solids can include rocks, stones and bricks, like those discussed in construction applications.
Impeller Benefits
When considering construction applications, review the project’s pump impeller needs. An open or semi-open impeller, with an adjustable wear plate, offers more room for non-compressible solids to pass. Pumps with this impeller type are able to handle solids up to five inches in diameter, reducing the risk of clogging because of non-compressible solids. The open impeller design also means that these pumps can be used in a wide range of applications from water and wastewater to drilled muds and industrial fluids. Cast steel is the best material of construction for open impellers because it provides excellent impact resistance when passing non-compressible solids, such as rocks. An open impeller, with a cutter vane, may not have large open passages like typical automatic self-priming pumps. However, for compressible solids, this type impeller can pull stringy solids through and pass them when other pumps may clog.
Effects on Efficiency
Efficiency depends on the impeller design, although open impellers and those with cutter vanes share similar efficiencies. Pumps with impellers and cutter vanes are capable of running continuously over time without clogging. Considering the type of application (water velocity, sizing pipe correctly, etc.) is important rather than only considering the straight hydraulic efficiency.