Process scaling affects numerous industries, causing varying degrees of unwanted costs and downtime. The oil industry, for instance, spends up to 0.25 percent of the global gross domestic product (GDP) per year eradicating and treating paraffin wax deposits in piping systems. The mining industry can be negatively affected by scale in process water, cyanide leaching and tailings. Alumina and bauxite refining operations face scale in digesters and transfer piping, which often creates a significant bottleneck in production. The pulp and paper industry experiences scaling in pulp digester screens and white, green and black liquor processing. Other industries that are affected by scale include steelmaking, wastewater treatment, chemical production and power generation. In most cases, the scaling is calcium carbonate or similar culprits. A type of nontraditional scaling is zebra mussels in the Great Lakes region. While not generally classified as scale, they can completely clog large-diameter pipeline in a short amount of time. Struvite scaling is a culprit often seen on exit lines of digesters in wastewater treatment facilities.
Electrical capacitance tomography can provide real-time imagery of any pipeline.
06/14/2016
Image 1. Figure 1. Scaling ECT pipeline instrument (Images and graphics courtesy of Flowrox)
Some remedies for scaling include mechanical cleaning, chemical cleaning or pigging pipelines. One of the keys to proper treatment of scaling is knowing when to add chemicals, when to run the pig or when to shut the process down to perform mechanical cleaning. While the oil and gas industry, for example, spends large amounts of money on instrumentation to monitor and control its processes, many operations monitor scale deposits primarily by watching for pressure drops in the piping system. This method, however, is imprecise because many variables can affect pressure drop. For instance, as a pump begins to wear, the pressure output of the pump may decrease. This does not always indicate the presence of a scale deposit; it could simply be a worn impeller.
Figure 2. Imagery of scale inside of a pipeline
The U.S. Department of Energy at the Morgantown Energy Technology Center in West Virginia and the University of Manchester Institute of Science and Technology in the U.K. both performed extensive early research and pioneering on the potential uses and applications of ECT technology.
Some types of instrumentation can monitor scaling conditions but only on a basic level. For instance, ultrasonic instruments can detect scaling conditions, but many of these instruments lose the ability to see additional accumulation of scale after only a few millimeters of scale buildup. New ECT instruments can provide real-time imagery of any pipeline—from one that has less than 1 millimeter of scaling to one that is 95 or even 100 percent built up with scale.