Pumps & Systems, May 2008

While complete packaged gas and dry chemical feed systems have been in the water treatment industry for many years, liquid metering pump packaged systems are relatively new. In most cases, plant operators want to purchase a complete chemical feed system-not just a metering pump. Plant or contract engineering staffs can design these packaged systems, and an installing contractor or, in some cases, plant personnel can construct them in place.
In today's environment of shrinking operations budgets and in-house skilled installer staff, the purchase of a single source complete system can greatly reduce capital and operations costs. When procuring such packaged systems, the metering pump design, the fluid pumped and the accessories installed all play vital roles in system safety, repeatability and reliability.

Design Considerations for the Packaged System

The basic chemical feed system contains many smaller components that play important roles in the overall design and operation of a successful, safe and reliable chemical metering package. The application and anticipated system hydraulic conditions determine the material selection, components used, and control and monitoring instrumentation.

Equipment material selection should be based on the metered chemical and the site-specific application. Chemical compatibility determines the material of construction for pipe, fittings, valves and all liquid contact components. Corrosiveness, abrasiveness and solids content of the chemical must first be determined to select the proper system materials of construction.

System component selection should be based on the anticipated hydraulic conditions. Static and dynamic hydraulic forces dictate pump placement and pipe diameters. The hydraulic conditions are derived from the static conditions, elevation of the storage tank, pump location and discharge static head. Dynamic conditions are a function of the chemical viscosity, specific gravity and vapor pressure with respect to the static head hydraulics.

The metering pump location and system components selection are related to the net positive suction head with respect to static and dynamic conditions of pulsating flow. On the suction side, if a pump exerts a negative pressure faster, then atmospheric pressure can force fluid into the chamber, and some of the fluid flashes to gas. Cavitation can damage pump surfaces and reduce capacity and repeatability. For a pump system to function without cavitation, Net Positive Suction Head (NPSH) available must exceed NPSH required.

In addition to NPSH considerations, the metering pump system's pulsating flow will create dynamic head losses due to liquid acceleration/deceleration momentum forces. During each suction stroke in a reciprocating pump system, the entire fluid column between the pump and injection point stops flowing and is forced to start flowing at each discharge stroke. Overcoming inertia can create large momentary pressure spikes on the pump system.

System Component Selection

Like any pump, the metering pump is used to convey fluid and function as a continuous adjustable fluid-measuring device. The mechanism conveying the fluid can be a piston, plunger or diaphragm with an adjusting device to vary the effective displacement per stroke. Motor drive systems can be used to vary the speed of each displacement. With many options available, careful thought must be given to proper selection of the metering and output control devices, all of which can be recommended by the system manufacturer.

Identifying the chemical flow rate and system expected head would be the first part of the selection process. Other factors in pump selection are storage tank elevations, lineal distances of suction and discharge lines, instrumentation control schemes and the overall goal of the feed system.

Calibration columns are used on the suction side of the metering pump to provide actual pump output curves. Manufacturers' data on metering pumps are generally calculated under ideal predetermined hydraulic conditions and are based on metering water. Actual metering pump outputs are determined in the treatment plant using the chemical to be metered under system operating conditions.

Pressure relief valves are a safety device designed to relieve unexpected high-pressure situations due to system obstruction or closed valves.

Pulsation dampeners are used to reduce momentum losses caused by fluid acceleration and deceleration. A pulsation dampener minimizes momentum losses by using compressed air to absorb these forces due to momentum of the fluid inertia. The operation principal is that air is compressible and Newtonian fluids are not.

Backpressure sustaining valves are multipurpose devices providing a constant backpressure on the discharge side of the metering pump. Without constant backpressure, the metering pump output would change with the elevation in the chemical storage tank. The backpressure valve is often used to artificially increase the system backpressure when the suction head is greater than the discharge and chemical siphoning through the system is expected. Also, the backpressure valves work in conjunction with the pulsation dampener, providing a zone of contained constant pressure.

Pressure gauges must be considered a necessary component to set the adjustable pressure relief and backpressure valves. System pressure readings can also be used to diagnose system reliability. System pressure should remain constant throughout the life of metering pump system, and changes may indicate the need for preventive maintenance schedules to maintain reliability.

Chemical injection devices are used just prior to introducing the chemical into the treatment process. The application process may be an open tank or pressurized pipe, each requiring a slightly different design.

Often system monitoring and measuring instrumentation is required to provide feedback to the plant computer systems located in a central control room. These components can be selected by the manufacturer in consultation with plant personnel and installed as part of the complete system. Local control and communication control panels play an important part of the system. Procuring the local control panel along with the chemical metering system from a single manufacturer provides complete system responsibility and lower capital and operations costs since all components are matched to the system and pretested during manufacturing.

All of these items serve a specific function within the feed system and should be considered during design to provide a complete solution to any chemical injection application.

Benefits of Packaged Metering Pump Systems

There are many advantages to buying a packaged chemical metering system instead of buying individual components. By working with the pump manufacturer to design a custom engineered solution for the application, the system will incorporate all components in the correct placement required to provide a safe and reliable feed package.

Once onsite, system mounting is simplified since all process connections and electrical Inputs/Outputs will have been verified from the approval drawings. The installation process requires fewer man hours and will guarantee the proper placement of the pump and required components, thus saving valuable labor time and money. Start-up is faster and less complicated since the complete system can be tested at the manufacturer's facility. All components are ideally located within the packaged system boundaries to provide easy access to all appurtenances.

Future maintenance of the packaged system is considered during the initial design phase. The pump and all of the major components are situated to allow for repair and/or replacement with union or flanged connections.

The detailed drawings provided with the packaged chemical feed system afford a record of the equipment installation. Duplication or replacement of a system becomes a simple task.

Alex Gordon, director of engineering for ProMinent Fluid Controls, Inc., has more than 25 years experience in the water and wastewater treatment industry. He has a Masters Degree in Civil Engineering from the University of Pittsburgh.


Daniel Helms, director of engineered products for ProMinent, has more than 10 years experience in the chemical feed industry.