It has long been recognized that rubber expansion joints (REJs) provide critical design functions that impact the reliability of the entire piping system. This has led some industry professionals to an overly conservative calendar-based replacement program and others to a somewhat reckless approach based on running equipment to failure. Maximizing an expansion joint's functional benefits while minimizing its inherent risk has always been a goal for the industry. Until recently, end users have addressed this concern by using performance replacement REJs along with best practices for maintenance, reliability and operations (MRO). These strategies should not be minimized. However, significant advancements have been made using a failure modes and effects analysis (FMEA) program and improved technologies related to the detection of failure modes. Specifically, synthetic aperture radar (SAR) has shown significant promise in improving nondestructive inspection of the inner construction of REJs. Combining performance replacement REJs with traditional and advanced inspection methods in an FMEA program can help end users to improve the management of REJs in piping systems in order to maximize plant reliability and efficiency. The critical design functions of REJs include their ability to accept all directional movements and to reduce noise and vibration in the piping system. These pieces of equipment are also designed to have a cycle life in the tens of millions of cycles, compensate for misalignments, provide access to piping and equipment, and relieve pipe and anchor stresses. However, the characteristics of rubber lead to degradation over time, which is accelerated by stress and temperature. These conditions are common in power and process systems. Unchecked degradation can lead to a catastrophic failure that could cause a plant shutdown. However, rigid piping systems designed without REJs or a means of handling the thermal growth and other external movements can lead to the same catastrophic consequences despite inspection or maintenance frequency.
Sealing Sense
04/29/2016
Image 1. Inspection of REJ body blister as a failure mode (Image and graphic courtesy of FSA)
Figure 1. Cross sections of bi-directional REJ (left) vs. unidirectional REJ (right)
See other Sealing Sense articles here.